We study bacterial colonization of the intestinal tract, to understand how both benign and pathological bacteria affect their environment. Our long-term goal is to treat intestinal diseases by genetically engineering bacteria in vivo.
The Ank Nijhawan research team is focused on improving outcomes for people living with or at risk for HIV, and ensuring their access to comprehensive healthcare and social support services. We also focus on individuals involved in the criminal legal system, and specifically the overlap of infectious diseases such as HIV, hepatitis, sexually transmitted infections and substance use.
Our lab works with murine disease models and employs Biochemistry, Molecular and Cell Biology to investigate brain glycogen metabolism and related neurodegenerative diseases.
Dr. Noh's research specializes in deducing causal inference for time series microscopy images and developing statistical methods for genomic data analysis. Currently, he collaborates with peers in the Green Center for Systems Biology and in the Lyda Hill Department of Bioinformatics to develop statistical methods to resolve complex biomedical data.
Research conducted by the Nomellini Lab utilizes animal models as well as human samples to examine the interaction between the innate and adaptive immune responses that occur after injury or infection, and the heterogeneity of the immune responses that occur in each individual. Led by Vanessa Nomellini, M.D., Ph.D., our lab ultimately aims to develop personalized immune therapies to reverse the immunosuppression that can occur in ICU survivors.
Vanessa Nomellini, M.D., Ph.D.
immunotherapyinjury repairgeneral surgeryemergency s burntraumacritical care surgeryICU
The focus of the Obata Lab is to study how environmental signals (e.g., microbiota, diet, day/night cycles) shape intestinal neural circuits and immune cell networks. A variety of experimental techniques are used, including state-of-the-art imaging technologies, viral tracing of gut innervation, in vivo and ex vivo physiological assays, gnotobiotic systems and multi-omics technologies. The Obata lab is also interested in elucidating the molecular mechanisms of inter-organ communication, including the Gut-Brain axis.
The Oh lab is committed to elucidating how G protein-coupled Receptor (GPCR) works in regulating metabolism and identifying new avenues for developing therapeutics to treat metabolic syndromes such as type 2 diabetes, insulin resistance.
Dayoung Oh, Ph.D.
G protein-coupled receptortype 2 diabetesobesitymetabolic syndrome
Our mission is to design and develop original devices, software solutions, and combined unique methodologies that translate into discoveries for next generation care.
Olson Lab studies muscle cells as a model for understanding how stem cells adopt specific fates and how programs of cell differentiation and morphogenesis are controlled during development.
The Orth lab is interested in elucidation the activity of virulence factors from pathogenic bacteria so that we can gain novel molecular insight into eukaryotic signaling systems.
The Osborne Lab focuses on how regulation of miRNA and mRNA controls the branching of developing cells, and how disregulation of these pathways contributes to aggressive tumor behavior.
The main research focus of the Otwinowski lab is on developing computational and statistical methods and protocols for macromolecular structure determination using X-ray crystallography.
The Pan laboratory uses Drosophila and mice as model systems to investigate size-control mechanisms in normal development and their pathological roles in cancer.
Duojia (DJ) Pan, Ph.D.
Cell and Molecular BiologyGenetics, Development and Disease
Our research is focused on mechanisms underlying acute kidney injury and sepsis. Our laboratory has implicated mitochondrial maintenance via PGC1alpha and NAD+ as a novel pathway for resilience against acute physiological stressors.
Dr. Park’s research focuses on the visual system and how the projection neurons in the retina, the retinal ganglion cell axons, find their targets and form synapses in the brain. He is investigating two key areas: 1) cellular and molecular mechanisms underlying the death of neurons and lack of regeneration in the central nervous system after injury and in degenerative diseases like glaucoma and 2) mechanisms by which neurons form proper connections with each other.